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UHTE with a selection model

P Selection model: model with built-in TE heterogeneity and
selection into treatment.
P At the cost of stronger assumptions than standard IVs can:
1. Estimate the full distribution of Treatment Effects (MTE)
2. Back out parameters of interest. (ATE, ATT, ATUT, PRTE)
» Marginal Treatment Effect (MTE) capture heterogeneity in the TE
along the unobserved dimension called resistance to treatment.

P Selection on gains: low vs high resistance to treatment individuals
might have different gains from treatment!



The Generalized Roy Model (GRM) - setup

Model

Yo = po(X) + Uy
Yy = (X)+ Uy
Y=(1-D)Y, + DY,

P Y, and Y| are potential outcomes

P OHTE: functions of observables X
» UHTE: functions of unobservables (U, U;)

P Treatment effects (Y; —Y;) are heterogeneous, ATE = pu; — 1.
» U, =Y, —E(Yy|X); U =Y; —E(Y;]X) so both are mean zero.



The Generalized Roy Model (GRM) - setup

Model Assumptions
1. D=W{V <v(X,2)}
2. Z 1L (Y, Y, V)|X

3. Distribution of V|X =z is
continuous.

Yo = 1o(X) + U
Yy =m(X)+U;
Y= (1-D)Y, + DY,

P Y, and Y| are potential outcomes

P OHTE: functions of observables X
» UHTE: functions of unobservables (U, U;)

P Treatment effects (Y; —Y,) are heterogeneous, ATE = p; — 1.
> U, =Y, —E(Yy|X); U; =Y; —E(Y;]X) so both are mean zero.
P Selection into treatment D depends on:

1. Instrument / encouragement Z
2. Heterogeneous cost / resistance to treatment V (RV)

» Z may not be binary; unknown function v(-)



Potential outcomes & Selection models

P Generalized Roy Model implies and is implied by the standard
assumptions in Angrist and Imbens, 1995 necessary to interpret an IV
as a LATE.

» Vytlacil, 2002: Standard IV Ass. of relevance, exclusion, and
monotonicity < representation of a choice equation as in GRM.

P Differences are only notational!



Target parameters in GRM

ATE() = E[Y; = Y | X = o] = i, (2) — pol)
TOT(z)=E[Y; - Y, | X =2,D=1] = py(
TUT(z) =EY, - Y, | X =2,D=0] = p,(

x) = po(x) +E[U, Uy | X =2, D =1]

) —
) —wo(x) +E[U; — Uy | X =2,D =0]

P Same definitions as before, but now we are conditioning on X.
P Average over the distribution of X to obtain unconditional versions.

P Selection on gains appers in TOT and TUT



Normalization: Transform V to Uniform(0,1)

» »(.) and V are unknown to econometrician.

P Yet Ass.2 (conditional full exogeneity) = some features are identified through
propensity score!
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» »(.) and V are unknown to econometrician.

P Yet Ass.2 (conditional full exogeneity) = some features are identified through
propensity score!

> Let Fy|x be the conditional CDF of V|X =z (continuous)

by full exogeneity
m(z,2) =PD=1|Z =2, X = 2] = P[V < v(2,2)|X = 2] = Fy x(v(2,7)|z),

the (treatment) propensity score




Normalization: Transform V to Uniform(0,1)

» »(.) and V are unknown to econometrician.

P Yet Ass.2 (conditional full exogeneity) = some features are identified through
propensity score!

> Let Fy|x be the conditional CDF of V|X =z (continuous)

by full exogeneity
m(z,2) =PD=1|Z =2, X = 2] = P[V < v(2,2)|X = 2] = Fy x(v(2,7)|z),

the (treatment) propensity score

Then:

D=1{V<v(X,2)}
s D= ]l{FV\X(V‘X) = FV\X(V(27X)|X)} =1{Up <n(Z,X)}.
=Up =n(Z,X)

» Up ~ Uniform(0,1) by Probability Integral Transform.
» P(Uniform(0,1) < ¢) = c.
P> Result: Up is a known distribution, 7(X, Z) is identified.



Generalized Roy model

Model

Assumptions
Yo = po(X) + U L D=1{Up <n(X,2)}
Yy = (X)+U; 2. Z 1L (Yy, Y1, Up)IX
Y= (1-D)Y, + DY, 3. Distribution of Up|(X = z,Z =
m(X,Z)=P(D = 1X, Z) z)~ Uniform(0,1)

P U, is interpretable as a quantile of "resistance to treatment”
conditional on X

P 1t is only comparable across individuals with same observables (a.k.a
within X)
P Indiv with lower U, are more likely to take treatment (regardless of Z).

» Result: The models are observationally equivalent!
» Do not need to know V nor v/(.)
P Only need propensity score which is identified!
P A propensity score of 0.9 = Every individual with resistance to
treatment below 90" percentile is treated.



Power of this normalization

This transformation is very important for identification:

m(X,Z)=P(D=1|X,2)
D=1{Up < n(X,2)}

P It directly links propensity score (7(X,Z)) to quantiles of
resistance to treatment (Up)

» When observing 7(X, Z) = .30, it means that the 30% with lowest U,
took up treatment a.k.a Up < .30.

P Therefore if the instrument Z € {0, 1} shifts propensity from:
(X, Z2=0)=03—>7(X,Z2=1)=0.6
then you know that the compliers are the ones with

Up € [m(X,Z=0)=03,7(X,Z=1) = 0.6]



Marginal Treatment Effects (MTEs)

MTE(u,x)

E(Y, - YolUp = u, X = ) )
f () — po (@) +EU, —Up|X =2,Up =1]. (2)
Observed heterogeneity TE ~ Unobserved heterogeneity TE

» MTE(u,z) is the average causal effect of D on Y for individuals
with selection unobservable Up = u and observed
characteristics X = z.

» MTE declining in u: indiv most likely to take treatment receive greater
gains from it.

P No unobsered heterogeneity: MTE is constant (flat) along w.

The MTE is a useful definition because it uses the selection model to
partition the population based on all unobservable and observable
determinants of their treatment choice except for the instrument, which
is the source of exogenous variation



Marginal Treatment Effects and LATE

Up
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0 n(z) n(z’)
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Y e
Treated under status quo z "Compliers" forz — z’

» MTEs are closely related to LATE.

» LATE is the average effect of treatment for people who are shifted into
treatment when the instrument is exogenously shifted from z to z’.

» In GRM these people (the "compliers”) have U, in the interval
[7(2), m(2")].



Marginal Treatment Effects and LATE

Up
| | |
| l T
0 n(z) n(z’)
— J
Y e
Treated under status quo z "Compliers" forz — z’

» MTEs are closely related to LATE.

» LATE is the average effect of treatment for people who are shifted into
treatment when the instrument is exogenously shifted from z to z’.

» In GRM these people (the "compliers”) have U, in the interval
[r(2), w(2")].

P Note how, when z — 2’ is infinitesimally small, so that m(z’) = 7(z), the
LATE converges to the MTE.

» MTE is thus a limit form of LATE.



From MTE Function to Target Parameters

Target Parameters
» ATE, TOT, TUT, LATE,PRTE, etc.

General Approach

P Any of the above (and more!) can be computed as a weighted average
of the MTE.

Example: ATE from MTE
1
ATE(z) =LY, =Y, | X =z2] = [EV‘X:I[MTE(X7 Up)] = / MTE(z,u) x 1du
(i
P Follows because Up|X = x ~ Uniform(0, 1).
» ATT: higher weights to lower resistance to treatment

» ATUT: higher weight to higher resistance to treatment
P Other weighting functions.
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Ito, Ida, and Tanaka, 2023 - Electricity dynamic pricing (1/2)

Ito, Ida, and Tanaka, 2023 study dynamic electricity pricing on
consumption.

» Dynamic pricing: higher peak-hour, lower off-peak rates.

P Treatment (D): household adopts dynamic pricing.

P Instrument (Z): $60 incentive to adopt (randomly assigned).
P Outcome (Y): electricity usage.

= Fits LATE setting: D, Z € {0,1}; Z randomly assigned (full exogeneity);
satisfies relevance and monotonicity.

P LATE estimates effect of the $60 incentive.

» But what about alternative policies?



Ito, Ida, and Tanaka, 2023 - Electricity dynamic pricing (2/2)

Figure 5: Marginal treatment effect estimates from Ito et al. (2023)
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Notes:  Authors’ reproduction of Figure 10, Panel A of Tto ct al. (2023). We thank Koichiro Tto for
providing the necessary data. The point estimate is the estimated MTE evaluated at the sample average of
the covariates. The shaded region indicates 95% bootstrapped confidence intervals.

P Unobserved Heterogeneous Treatment Effects (UHTE):

P ”Ease of adjustment” is unobserved.
P MTE captures UHTE via u.

P Selection on gains: consumers with higher expected savings are more
likely to adopt.



Policy Implications

P Incentive size matters:

P Small incentives attract high-impact adopters.
P Large incentives attract more adopters with smaller effects.

» MTE relies on stronger assumptions = Alternative policy estimates are
less credible than LATE.

P Trade-off: LATE alone is limited, MTE provides deeper insight.



Cornelissen et al., 2018 - Who Benefits from Universal Child Care?

Background

» Major policy question: causal effect of early childhood interventions,
including state-provided day care.

P Some studies of highly-targeted programs (e.g. Head Start / Perry
Preschool) find sizable positive effects.

» Evidence for universal provision is mixed: some find sizable negative
effects (Quebec study).

» How to rationalize these conflicting findings?

» Maybe targeted programs enroll children most likely to benefit, i.e.
those with an adverse home environment.



Cornelissen et al., 2018 - Who Benefits from Universal Child Care?

This Study

P Study provision of universal preschool/childcare in Germany using
MTE approach.

P Use a staggered roll-out of 1990s policy reform that affected the
number of slots for publicly-provided childcare in different places.

P Treatment (D € {0,1}) is early attendance, defined as attending for at
least three years.

P Also estimate MTE for ordered selection model: {1,2,3} years.
P Instrument (Z) is child care coverage rate in the municipality.

P Outcome (Y) is a universal school readiness exam administered at age 6.



Cornelissen et al., 2018 - Who Benefits from Universal Child Care?

Treatment effect
0

U
MTE  ——— 90%C |

P Reverse selection on gains: Minorities benefit most but enroll less.

P Similar selection on unobservables: "High resistance” children benefit
most.

P Strong effect: TUT > ATE > 0 > TOT.
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Identification
Separability (1/3)

» In principle, possible to identify MTEs with no further assumptions.

» However, would require a Z allowing 7(X, Z) to vary over the full
range (0,1) for any value of X !

ODo not mistake unobserved potential treatment effects (U, U;) with quantiles of
resistance to treatment Up



Identification
Separability (1/3)

» In principle, possible to identify MTEs with no further assumptions.

» However, would require a Z allowing 7(X, Z) to vary over the full
range (0,1) for any value of X !

Assumption 4: Separability E(U,|V, X) = E(U;|V) for j € {0,1}

ODo not mistake unobserved potential treatment effects (U, U;) with quantiles of
resistance to treatment Up



Identification
Separability (1/3)

» In principle, possible to identify MTEs with no further assumptions.

» However, would require a Z allowing 7(X, Z) to vary over the full
range (0,1) for any value of X !

Assumption 4: Separability E(U,|V, X) = E(U;|V) for j € {0,1}

Result:

» MTEs are additively separable in U, and X:

P X only affects intercept of MTE.
P The pattern of UHTE does not depend on X.
P c.g MTE has same pattern for Men and Women but different intercept.

» MTE is identified over the common support, unconditional on X

9Do not mistake unobserved potential treatment effects (U, U;) with quantiles of
resistance to treatment Up



Identification
Separability (2/3)

0.6

0.0

Figure: Implications of separability for MTE

gender
== x=Men

we= x = Women




Identification
Separability (3/3)

Is separability such a strong assumption?

P Not as strong as joint normality of (Uy,U;, V) in Heckman selection
model.
P Same pattern along quantiles of resistance to treatment, so might
actually make sense.
» This assumption should be carefully evaluated by researcher
P This is application dependent.



MTE is identified over common support of 7(X, Z)

P Separability assumption = do not need 7(X, Z) to have support in
(0,1) for all =

P ak.a supp(n(X =z,2)) = (0,1)Vz
P Instead, only need supp (7(X,Z)) = (0,1) unconditional on X!

P MTE is identified over the common support!
P Each X = z will contribute to identify some part of the support of Up,.

0 2 4 6 8 1
Propensity score

[ Treated [ Untreated |

Figure: Andresen, 2018, common support plot, probit



Identification

Linearity

It is common practice to assume linearity for p,;(X):

P Restrict the way co-variates affect MTE’s intercept.
» EY | X =2]=2'8, and E[Y}|X =z] =a'53,

Together, Separability + Linearity yield:

MTE(u, ) = () — po(x) + E(Uy = Uy | X = 2,Up = u)

=y (x) — po(x) + EU; —Ug | Up =) (Separability)
@' (B — Bo) + EU, =Uy |Up =) (Linearity)
N S 1)

heterogeneity in observables k(u): heterogeneity in unobservables

=1’ (B — By) + k(u)

Note that because of Separability k(u) is only a function of u, not x!



Table of contents

Estimation
Local IV Approach
Separate Approach



Estimation approaches

Two approaches exist to estimate MTES:

1. Local IV

» Heckman and Vytlacil, 1999; Heckman and Vytlacil, 2001; Heckman and
Vytlacil, 2005

2. Separate Approach
P Heckman and Vytlacil, 2007; Brinch, Mogstad, and Wiswall, 2017
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Local IV - Intuition
» For fixed X, without UHTE E(Y|r) = E(DY; + (1 — D)Yy|r) is linear in 7.
P Without UHTE, only the proportion of treated changes, while TE is

constant.
P On the other hand: with UHTE, E(Y|r) displays non-linearities

» LIV identifies MTE from those non-linearities!

» Hence from the derivative of E(Y|r) w.r.t
P Constant derivative = constant MTE = no UHTE
» 1 /| derivative = 1 / | MTE = UHTE.
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Local IV - Intuition
» For fixed X, without UHTE E(Y|r) = E(DY; + (1 — D)Yy|r) is linear in 7.
P Without UHTE, only the proportion of treated changes, while TE is

constant.
P On the other hand: with UHTE, E(Y|r) displays non-linearities

» LIV identifies MTE from those non-linearities!

» Hence from the derivative of E(Y|r) w.r.t
P Constant derivative = constant MTE = no UHTE
» 1 /| derivative = 1 / | MTE = UHTE.
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Local IV - Intuition
» For fixed X, without UHTE E(Y|r) = E(DY; + (1 — D)Yy|r) is linear in 7.
P Without UHTE, only the proportion of treated changes, while TE is

constant.
P On the other hand: with UHTE, E(Y|r) displays non-linearities

» LIV identifies MTE from those non-linearities!

» Hence from the derivative of E(Y|r) w.r.t
P Constant derivative = constant MTE = no UHTE
» 1 /| derivative = 1 / | MTE = UHTE.
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Local IV - Separability assumption

P LIV requires > 3 distinct values of 7(Z) to identify linear MTE.
» Thus binary Z would not work?



Local IV - Separability assumption

P LIV requires > 3 distinct values of 7(Z) to identify linear MTE.
» Thus binary Z would not work?

» Would still work thanks to separability assumption!
» Even with Z € {0,1}
P Will result in different {r(z),7(2’)} across observables X!
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Local IV - Separability assumption

P LIV requires > 3 distinct values of 7(Z) to identify linear MTE.
» Thus binary Z would not work?

» Would still work thanks to separability assumption!

P Even with Z € {0,1}
P Will result in different {r(z),7(2’)} across observables X!
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Local IV - Separability assumption

P LIV requires > 3 distinct values of m(Z) to identify linear MTE.
» Thus binary Z would not work?

» Would still work thanks to separability assumption!

» Even with Z ¢ {0,1}
P Will result in different {r(z),7(2’)} across observables X!

» Homogeneizing intercepts

1.50 -

E(Y]u)



Local IV - Formally

» From GRM with listed assumptions, can show that:

EY|X =2, 7(X, Z) = p} = E{Yy + D(Y; = Y)|X =z, 7(X, Z) = p}
= xfy + 2(By — B1)p + pE(U; — Uy |Up < p)
K(p)

P Taking the derivative of this expression with respect to p and
evaluating it at u, we get the MTE:

Y |X =2, 7n(X, Z) =p}|  _ HpE(U, —UolUp <p)}
6p p—u - x(/Bl - 50) + (9;0 p=u

MTE(z,u) = (8; — Bg)zr + E(U; — Uy|Up = u)




Local IV - Estimation procedure

1. Identify selection into treatment 7(X, Z) using a probability model
P e.g., probit, logit, linear probability, or semiparametric binary choice.
2. Assume a functional form for K(p) = pE(U, — Uy|Up < p).

P Parametric MTE (Joint normality, polynomial, polynomial w/ splines)
P Semi-parametric (local polynomial regressions)

3. Estimate the conditional expectation of Y from eq.4

[E{Y|X =z,m(X,Z) :P} =z + z(By — B1)p + pE(U; — UO‘UD <p)
K(p)

4. Form its derivative to obtain the MTE.



Local IV - Cornelissen et al., 2018

» Cornelissen et al., 2018 estimate parametric MTE.
» Model K(p) as a polynomial in p

K(p)

J
EY |7(X,Z) =p, X =a] =2'By +a' (B — Bo)p+ Y a;pd
Jj=2

1. Run probit/logit of D; on (X, Z;) to estimate the propensity scores p;, .
2. Estimate f;, 5;, o from the following regression:

J
Y, = X8y + X[ (By— Bo) b+ Dyl + ¢

=2
3. Construct the estimated MTE function as follows:

— ol ,~ s s I
MTE(p,2) = 5 |26y += (B —Bo)p+>_ap
j=2
4. Take weighted average of ]\m(p, x) to construct desired target
parameter.
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Separate approach - Intuition

P Specify and estimate conditional expectations of ¥; and Y; in
treated /untreated sample separately

EY | X =2, D=1) =26 + E(U,|Up<p) = 26, + K,(p)
E(Yy| X =2,D=0) =28, + E(Uy|Up>p) = 28, + K, (p)
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Separate approach - Intuition

0 1 2 3 mz=4 5 6 7
Uo

‘ — E(Yolu) = = E(Ysfu) - -+ mTE

P Average outcome for treated under z

nz)=8 9 1



Separate approach - Intuition

be E(GE) e =

0 1 2 3 =4 5 6 7 mz)=8 9 1
Up

’ — E(Yolu) = = E(YaJu) - -+ MTE

P Average outcome for treated under 2’
P Observe decreasing outcome for treated
P If this trend is not parallel for the Y, |u), will entail UHTE.



Separate approach - Intuition
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Separate approach - Intuition
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P Average outcome for un-treated is increasing in u
P Decreasing E(Y;|u) & increasing E(Y;|u) = | MTE = UHTE.
» Binary Z identifies a linear MTE model within X!



Separate approach - In practice

1. Identify selection into treatment 7(X, Z) using a probability model
P c.g., probit, logit, linear probability, or semiparametric binary choice.
2. Assume a functional form for K;(p) = pE(U;|Up < p) for j€0,1.

P Parametric MTE (Joint normality, polynomial, polynomial w/ splines)
P Semi-parametric (local polynomial regressions)

3. Estimate the conditional expectation of Y in the sample of treated and
untreated separately using the regression:

Y, = XB; + K;(p) +e

4. Form the derivatives to obtain the MTE from:

MTE(z,u) = EY|X =2,Up =u) —E(Yy|X =2,Up = u)
=x(By — By) + k1 (u) — ko(u)
Where k;(u) = E(U,;|Up = u)



MTE in alternative Setups

» Binary D, with violation of monotonicity

P e.g judge FE.
P Solution: Binarize instrument, "most” vs "least” strict. Makes less likely
to violate monotonicity.

» Binary multiple instruments
P c.g distance (close vs far) + scholarship (yes vs no).
P Remove (Z;1, Z;) = (0,1) and (Z;1, Z;5) = (1,0)
P Keep only (Z;1,Z;) = (0,0) and (Z;1, Zs5) = (1,1)
P Ordered treatments

P MTE does extend to ordered treatment (e.g Bachelor vs Master)
P But, threshold crossing not equiavelent to monotonicity anymore

» Example : 2018
» Continuous treatment

P Requires extreme variations! in Z,; or additional assumptions.
» Unordered treatments

P Requires extreme variations in Z; or additional assumptions.

1Does not exist in practice
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Recommendations for Practitioners (1/3)

Step 1: Assess the likely role of UHTE

» Why could treatment effects vary? Is there any reason to think that
treatment effects would not vary?

P Problem occurs if UHTE is correlated with treatment choice. How
plausible is it to assume that the UHTE is uncorelated with treatment
choice?

P To defend non-existence of UHTE: show that there is no OHTE
(precisely estimated 0s).

P If stick to constant-TE assumption: state clearly in paper.



Recommendations for Practitioners (2/3)

Step 2: Reverse engineer with caution. The JOSH method:

1. Judge the setting. Which setting is applicable? (Treatment,
Instrument, Covariates)
2. Obtain a weakly causal interpretation. Is estimand weakly causal
under full exogeneity and an appropriate monotonicity condition?
P Primary concern = Satisfy rich covariates condition?
P If Z, 1L X;, automatically satisfied.
P Otherwise: perform RESET test.
3. Scrutinize the interpretation. How can be the estimand
interpreted? (Weights, counterfactual)

4. Honestly communicate to the audience. Clearly and
transparently communicate the interpretation of the estimand and
the assumptions on which the interpretation rests.



Recommendations for Practitioners (3/3)

Step 3: Forward engineer estimates of interpretable target
parameters

P Choose target parameters relevant to your research question.

» What can be said about target parameters depend on assumptions
made.

» Explore the frontier (trade-off)

Figure 7: The empirical production possibility frontier for IV methods

A

Constant effects
(no UHTE) Use MTE to estimate

target parameters <— Reverse enginecring

Incorrectly describing

linear IV as LATE

Unconditional LATE

1V intersection bounds

Linear TV correctly interpreted

Stronger conclusions —

Manski-Robins bounds

More credible assumptions —

Notes: Two primary trade-offs involved in producing empirical rescarch with a binary treatment.



Recommended packages

For MTE:

» STATA: mtefe (Andresen, 2018), ivite (Shea and Torgovitsky, 2023)
P R: ivmte (Shea and Torgovitsky, 2023)

See Torgovitsky’s github for more detailed list of packages.


https://github.com/martin-andresen/mtefe
https://tinyurl.com/3sutzdmt
https://tinyurl.com/3sutzdmt
https://a-torgovitsky.github.io/ivhandbook

Bibliography I

@ Andresen, Martin Eckhoff (2018). “Exploring marginal treatment
effects: Flexible estimation using Stata”. In: The Stata Journal 18.1,
pp. 118-158.

@ Angrist, Joshua and Guido Imbens (1995). Identification and
estimation of local average treatment effects.

@ Brinch, Christian N, Magne Mogstad, and Matthew Wiswall (2017).
“Beyond LATE with a discrete instrument”. In: Journal of Political
Economy 125.4, pp. 985-1039.

@ Cornelissen, Thomas et al. (Dec. 2018). “Who Benefits from Universal
Child Care? Estimating Marginal Returns to Early Child Care
Attendance”. In: Journal of Political Economy 126.6. Publisher: The
University of Chicago Press, pp. 2356-2409. 1sSN: 0022-3808. DOI:
10.1086/699979. URL:
https://www.journals.uchicago.edu/doi/10.1086/699979 (visited on
03/24/2025).

@ Heckman, James J and Edward J Vytlacil (1999). “Local instrumental
variables and latent variable models for identifying and bounding
treatment effects”. In: Proceedings of the national Academy of Sciences
96.8, pp. 4730-4734.


https://doi.org/10.1086/699979
https://www.journals.uchicago.edu/doi/10.1086/699979

Bibliography 11

@ Heckman, James J and Edward J Vytlacil (2001). “Local instrumental
variables”. In: Nonlinear Statistical Modeling: Proceedings of the
Thirteenth International Symposium in Economic Theory and
Econometrics: Essays in Honor of Takeshi Amemiya.[Google Scholar].

@ — (2005). “Structural equations, treatment effects, and econometric
policy evaluation 17. In: Fconometrica 73.3, pp. 669 738.

@ — (2007). “Econometric evaluation of social programs, part II: Using
the marginal treatment effect to organize alternative econometric
estimators to evaluate social programs, and to forecast their effects in
new environments”. [n: Handbook of econometrics 6, pp. 4875-5143.

@ Ito, Koichiro, Takanori Ida, and Makoto Tanaka (2023). “Selection on
welfare gains: Experimental evidence from electricity plan choice”. In:
American Economic Review 113.11, pp. 2937-2973.

@ Mogstad, Magne and Alexander Torgovitsky (2024). Instrumental
Variables with Unobserved Heterogeneity in Treatment Effects. Working
Paper 32927. National Bureau of Economic Research. Dor:
10.3386/w32927. URL: http://www.nber.org/papers/w32927.


https://doi.org/10.3386/w32927
http://www.nber.org/papers/w32927

Bibliography II1I

ﬁ Shea, Joshua and Alexander Torgovitsky (2023). “ivmte: An R
Package for Extrapolating Instrumental Variable Estimates Away From
Compliers”. In: Observational Studies 9.2, pp. 1-42.

B Vytlacil, Edward (2002). “Independence, monotonicity, and latent

index models: An equivalence result”. In: Fconometrica 70.1,
pp. 331-341.



Appendix



The Generalized Roy Model (GRM) - Full exogeneity

Model Assumptions

1. D=1V <v(X,2)}

2. Z 1 (Y, Y1, V)X

3. Distribution of V|X =z is
continuous.

Yo = po(X) + Uy
Yy = (X)+ Uy
Y=(1-D)Y, + DY,

» Assumption 2 implies (conditional) full exogeneity
P 1t is equivalent to Z 1L (Y, Yy, Dy, Dy)|X

» Z conditionally independent of Potential outcomes and is independent
of unobservables (V) which determine potential treatment.



The Generalized Roy Model (GRM) - Monotonicity

Model Assumptions
1. D=W{V <v(X,2)}
2. Z 1L (Yo, Y3, V)X

3. Distribution of V|X =z is
continuous.

Yo = po(X) + U
Y: = (X)+ U,y
Y= (1-D)Y, + DY,

» Assumption 1 + 2 imply monotonicity

P Holding X fixed, we can shift (X, Z) by changing Z without affecting
V.

» Why? Conditional on X , Z and V are independent and V doesn’t enter
v().

P For a given shift in Z, two people with the same observed

characteristics X experience the same shift in v(-) regardless of whether
they have different resistance to treatment V.



Policy Relevant Treatment Effects (PRTEs)

E[Y | X =z, New Policy | —E[Y | X =z, Old Policy ]
E[D| X =z, New Policy | —E[D | X =z, Old Policy |

PRTE(z) =

» Compare a new policy to old one; average over X to obtain
unconditional version.

P Policy = change in the propensity score 7(Z, X) that changes who is
treated without affecting ( Yy,Y,, V).

P PRTE is the average change in Y per person shifted into treatment.
P At some values of x, people may be shifted out of treatment

» A LATE is a PRTE, but a given LATE may not answer your policy
question!



Parametric MTE

Table 1. Parametric MTE models

Function Definition Normal Polynomial Polynomial with splines
Uo, U, ¥V ~ N[0, B}, klu) or ky(u) s Fol1s) oF kog{u) Bs Lth-order polynomials (L22) with @ knots
, E= Lth-order polynominls  for quadratic and higher-order terms at (hy, ..., hg) and
o :
{ P } with mean O mean 0
e p 1
L .
Ku) Bl - LolUp (o1 = pa)® ) PLICES:)) Domll - )+

K(p)  pE(Ui-UelUp £ —(p —pn)e {87 3ip)}

Ex(u) E(U:|Up =) )
L
kolu) E(Uo|Up =) pa®~ ) E‘m(u‘ - )
-1 .
Ki(p) B (Up S p) S )] Lt }

L

) i o n
Ka(z) E(lolUp > 5} Ll E o ity £ ottty +
i+ (53 hg)ip—hg)t 1
5 8 {u—nﬂnﬁd—‘ = }

=31
MTE(w,u) E(Vi - VolUp =u,X =a) @(81 — 8u) + k{u) = @(By — Bo) + kalu) — ka(u)
Yi(z,u) EYilUp=uwX=g) w81 + kilu)
Yolw.u)  EYolUp=u, X =g @80 + ho(u)
Note: for ] with different for the joint il of the error terms. 1(A) is the indicator

function for the event A, Note that m; = 3y — ro; and equivalently for the spline coefficients, Calculated ns K(p) = J k{u)du,
Ku(p) = 1/p [ a (u)au and Kolp) = 1/(1 = p) [} ka{uldu



Semi-parametric MTE

Table 2. Semiparametric MTE models

Step

Local IV Separate approach

Estimating equation

Double residual regression
{Robinson 1088)

Estimate fo, 81 — fo using
regression
Construct residual
Estimate K
Construct k

Construct MTE

Y =X8 +X(5 — o)+ Kp) +e Yy =X8;+ Klp) + ¢

separate local polyncmial regressions of Y and X
on p in treated and untreated samples give
residuals ey, and ex,, construct
ey = Dey, + (1 — Djey, and similar for ex

local polynomial regressions of ¥, X, and X x p give
residuals ey, ex, and exxp

ey = exBo +exxp(f — fo) + ¢ ey =exfo+ Dif1— folex + €

?=y-x§5-x(5,_.§n)p ?=y-x3‘n_x(5l_éﬁ)u
. _ ) . separate local polynomial regressions of ¥ on
local polyromial “5::":“ “fKL,";}’“ saving level K{p)  1\d and untreated samples, saving level Ky(p)
ane sope and slope K (p)
o o s E 4o
) = B ka(u) K1(p) + pK1(p)

Fot) = Kolp) - (2 - 9L (6}

FTB(z,u) = = (#7 = Bo) = klu) SETB(x,u) =z (67— Bo)) + Fu ) - Fofas)

Note: Steps in the estimation of semiparamstric MTE models using local IVs ot the separate approach. To see the relation between &,(u) and K (z).

note that K (p) = E(U1|Up < p) = 1/p [PE(U: Up = uldu = K{(p) = = (1/p)K: (p) + (1/p)ka{u}, which leads to ky(u) = Ki(p) + pK| ().
We can find similar expressicns for kolu}.

In principle, it is possible to combine the semiparametric and the polynomial approach by first estimating the 3 coefficients from the polynomial

mode] and then using semiparametric methads to find K, This is the

MTE madel, if

pelynoniel () and semiperavetzic are specified together in ntefe. Although computationally far less complex, there is little theory ta think
that, the semiparametric estimate of this model should be any better than the MTE constructed fram the paramesic estimates.



Target parameters: MTR weights

Table 5: Marginal treatment response weights for common target parameters

MTR weights

Target parameter Expression w(lluyz,2) w0, z,2)

Average treated outcome EYi(1)] 1 0

Average untreated outcome EYi(0)] 0 1

Average treavment effect (ATE) E[¥i(1} - ¥i(0]] 1 -1

Condisional ATE E[V(1) - (0% € 4] e il z2)

Average treatment on the treated (ATT} EYi(1) - ¥(0)|D; = 1] l[i‘,[f)—"(”;;” —w(l|uz,7)

=

Average treatment on the untreated (ATU) EYi(1) - Yi(0)| D = 1] 1[1“,[1’37"(7";]’)] —w(1fu, 2, 7)

Generalization of the LATE to Uj € [1,1] EYi(1) - Yi(0)|Us € [u,7]] w ~w(lu,z,7)

Average selection on treatmen efects EVi(1) - Y00, = 1) - EXi(1) - Yi(0)|Ds = 0] % - W —ll]y2,2)
1u< 1

Average selection blas E[Y{0)1D: = 1] - EM(0)|Ds = 0] [;;+fjﬁ” - %&;31 f

) EYe] - E[Y] Pp(X, 22) 2 u] - PlpiX, Z) 2]
Palicy relevant treatment effect (PRTE) £ ED] o I ERE T —w(1u,)

Notes: The weights show how to produce the specified target parameter through the formuln

1 1
target mmmct:r=lE[f Mm(uuX()»(lwu,z‘.mdwf MTR(O\u‘X;)w(ﬂ\n‘ZuXe)du}-
o o

» When weights are symetric (a.k.a w(1|u, Z;, X;)

= —w(0lu, Z,;, X,):

target parameter = E[(MTR(1|u, X;) — MTR(0|u, X,)) w(1l|u, Z;, X;)]



Target parameters: MTE weights

Table 3. Unconditional treatment-effect parameters and weights

Parameter Event A 3] @(u)
ATE ATE 1 1 Z!
ATT ATT Up<p £ P_"%)
ATUT ATUT Up>p 11—_Elzp ) i—i(]g;«):)

LATE Local ATE

2SLS Weighted average LATE

PRTE Policy-relevant ATE

' Plz:)-plz]) P{p(z")>u}-P{p(z)>u}
P(z) < Up < P(2) o) L

E(p")—E(p; (0 —T)
{8—E(@®)}(D:=D}  {E(0|p>u)—E(B)}P(p>u)
cov(D.,5) Xcov(D,b)

o
=Py P(p'>u)=P(p>u)
p<Up<y -5 o=

MPRTE1 Marginal PRTE 1
MPRTE2 Marginal PRTE 2
MPRTE3 Marginal PRTE 3

} fv (2 fo(w)fv {Fy* ()}
Z-Vl<e E it FEI GO
1

p—Ul<e
fp )
-1 <e 1 “—ﬁﬁ

olu)

Note: Weights for common treatment effects. Discrete distribution of Up with

s points,
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FiG. 6.—MTE curves [rom ordered selection model for 1, 2, and 3 years of child care.
The figure displays separate MTE curves for the effects of moving [rom 1 year of child care
10 2 years of child care (solid line) and moving [rom 2 years of child care to 3 years (dashed
line) for the outcome of school readiness based on a normal selection model with a gen-
eralized ordered probit selection equation (see app. B for a description of that model).
The curves are evaluated at mean values of the covariates. Both curves are statistically sig-
nificantly upward sloping pointing toward a selection patiern of reverse selection on gains.
Source: Authors’ calculations based on school entry examinations, Weser-Ems, 1994-2002,
as the main data source.

» Back - alternative setups ] = =
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Reverse Engineering, context

Table 3: Reverse engineering linear I'V estimands

O

d‘}

Summary

Any Any Yes

The Wald and simple linear TV estimands are equal to each other and equal o the
LATE under monotonicity and full exogeneity.

Each pair of instrument. values defines a different, complier group with an associated
LATE. Different lincar IV cstimands pmdurx different. weighted averages of LATEs.

2818 with a instrument i leads to gativo weights. The
woights can bo negative with non-saturated specifications, but will b non-nogative if
the specifi reproduces the icity arder of the instruments. The mono-

tonicity condition ean be especially unattractive if the multivalued instrument is not
ardered, for example in judge designs, or when there are multiple instruments

If the instrument is binary, and the treatment is a single scalar cardinal variable, then
the linear IV estimand can be interpreted as the average causal response (ACR). The
ACR can in turn be interpreted either as an average treatment effect among over.
lapping groups whose treatment choice is shifted by the instrument, or an average
per-unit treatment effect across all (disjoint) complier groups. The second interpre
tation is a natural generalization of the LATE from the binary treatment case. If
the instrument is multivalued, then these generalized LATEs get averaged according
to different instrument contrasts, the same way as in the binary treatment case, and
with the same caveats. Ordered treatments that are not cardinal are better analyzed
through the unordered treatment case.

The linear TV estimand in this case has indicators for each treatment. state, except
for the excluded state, which is captured by a constant. If there arc instruments that
affect cach treatment state, then the two lincar TV estimands will be weakly cansal
if and only if cach instrument. affects choices only in its targeted treatment state
and the excluded state is always the preferred or next best choice. Achieving this
requires strong behavioral restrictions or data on next best choices. With ordered
treatments that are not cardinal there are possibilities for restoring a weakly cansal
interpretation, but they are complicated; see main text.

“I'wo assumptions are required for a linear 1V estimand to be interpretable as a convex
weighted average of LATEs: rich covariates and a monotonicity-correct first stage.
Rich covariates is often satisfied in randomized experiments, but may not be satisfied
when the i is not i of covariates. The first stage will usually be
‘monotonicity- uur(ed. under strong monotonicity, but umlel weak monotonicity it will
only be monotoni 4 il it includes iates in a way that is fexible enough
to account for changes in the direction of monots Ly across covariales.

Notes: This table summarizes the discussion in Section 3.



MLE process

Relevant only for the joint normal model, the mlikelihood option implements the
maximum likelihood estimator described in Lokshin and Sajaia (2004). The individual
log-likelihood contribution is

£ =D, [ln {£(m:)} +In {,,llf (Z_I.) }]
F(1 - D)) [ln{l"( o)} ‘“{al(,f (glna)}]

where 7;; = (’}‘Zi +pj Uﬁ) !

a; 1 pf

where f is the standard normal density. 'This log likelihood can be maximized to give
the coefficients +, B, 51, 70, 71, po, and p;. These parameter estimates can be used to
construct the MTE and treatment-effect parameters as detailed in table 1.




MTE and Marginal Treatment Responses (MTR)

» MTE can be decomposed into 2 conditional expectations called MTR.

MTR(d|u,z) = E[Y(d)|U = u, X = x] (5)

P Any target parameter that reflects a mean or a mean contrast of
potential outcomes can be written as a weighted average of the MTR
function.

» For isntance, the ATE

E[Y;, — Yy] = Eyx [ / 1(MTR(1|u, X) — MTR(0u, X))du (6)
0

Key to these weighting expressions is that the weights themselves are
identified.



Separate approach - estimation

1. Construct K, (p) and K,(p), depending on your specification; see tables
1 and 2.

2. Estimate the conditional mean of Y from the stacked regression:

Y = X8y + Kp(p) + D{X(8; — By) + Kp(p)} +¢

where

[K.p) D=1
KD(p)_{KO(p) if D=0

3. From these estimates, recover the k;(u) functions.

4. Construct the estimates of the potential outcomes and the MTE as

— ~ ~

MTE(z,u) =Y (z,u) — Yy(z,u)
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