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UHTE with a selection model

▶ Selection model: model with built-in TE heterogeneity and
selection into treatment.

▶ At the cost of stronger assumptions than standard IVs can:
1. Estimate the full distribution of Treatment Effects (MTE)
2. Back out parameters of interest. (ATE, ATT, ATUT, PRTE)

▶ Marginal Treatment Effect (MTE) capture heterogeneity in the TE
along the unobserved dimension called resistance to treatment.

▶ Selection on gains: low vs high resistance to treatment individuals
might have different gains from treatment!
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The Generalized Roy Model (GRM) - setup

Model

𝑌0 = 𝜇0(𝑋) + 𝑈0

𝑌1 = 𝜇1(𝑋) + 𝑈1

𝑌 = (1 − 𝐷)𝑌0 + 𝐷𝑌1

▶ 𝑌1 and 𝑌0 are potential outcomes
▶ OHTE: functions of observables 𝑋
▶ UHTE: functions of unobservables (𝑈0, 𝑈1)

▶ Treatment effects (𝑌1 − 𝑌0) are heterogeneous, 𝐴𝑇 𝐸 = 𝜇1 − 𝜇0.
▶ 𝑈0 ≡ 𝑌0 − 𝔼(𝑌0|𝑋); 𝑈1 ≡ 𝑌1 − 𝔼(𝑌1|𝑋) so both are mean zero.
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Potential outcomes & Selection models

▶ Generalized Roy Model implies and is implied by the standard
assumptions in Angrist and Imbens, 1995 necessary to interpret an IV
as a LATE.

▶ Vytlacil, 2002: Standard IV Ass. of relevance, exclusion, and
monotonicity ⇔ representation of a choice equation as in GRM.

▶ Differences are only notational!
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Target parameters in GRM

ATE(𝑥) ≡ 𝔼 [𝑌1 − 𝑌0 ∣ 𝑋 = 𝑥] = 𝜇1(𝑥) − 𝜇0(𝑥)
TOT(𝑥) ≡ 𝔼 [𝑌1 − 𝑌0 ∣ 𝑋 = 𝑥, 𝐷 = 1] = 𝜇1(𝑥) − 𝜇0(𝑥) + 𝔼 [𝑈1 − 𝑈0 ∣ 𝑋 = 𝑥, 𝐷 = 1]
TUT(𝑥) ≡ 𝔼 [𝑌1 − 𝑌0 ∣ 𝑋 = 𝑥, 𝐷 = 0] = 𝜇1(𝑥) − 𝜇0(𝑥) + 𝔼 [𝑈1 − 𝑈0 ∣ 𝑋 = 𝑥, 𝐷 = 0]

▶ Same definitions as before, but now we are conditioning on 𝑋.
▶ Average over the distribution of 𝑋 to obtain unconditional versions.
▶ Selection on gains appers in TOT and TUT
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Normalization: Transform 𝑉 to Uniform(0,1)

▶ 𝜈(.) and 𝑉 are unknown to econometrician.
▶ Yet Ass.2 (conditional full exogeneity) ⇒ some features are identified through

propensity score!

▶ Let 𝐹𝑉 |𝑋 be the conditional CDF of 𝑉 |𝑋 = 𝑥 (continuous)

𝜋(𝑧, 𝑥) ≡ ℙ[𝐷 = 1|𝑍 = 𝑧, 𝑋 = 𝑥]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
the (treatment) propensity score

=
by full exogeneity

⏞⏞⏞⏞⏞⏞⏞⏞⏞ℙ[𝑉 ≤ 𝜈(𝑧, 𝑥)|𝑋 = 𝑥] ≡ 𝐹𝑉 |𝑋(𝜈(𝑧, 𝑥)|𝑥),

Then:

𝐷 = 𝟙{𝑉 ≤ 𝜈(𝑋, 𝑍)}
⇔ 𝐷 = 𝟙{ 𝐹𝑉 |𝑋(𝑉 |𝑋)⏟⏟⏟⏟⏟

≡𝑈𝐷

≤ 𝐹𝑉 |𝑋(𝜈(𝑍, 𝑋)|𝑋)⏟⏟⏟⏟⏟⏟⏟
=𝜋(𝑍,𝑋)

} ≡ 𝟙{𝑈𝐷 ≤ 𝜋(𝑍, 𝑋)}.

▶ 𝑈𝐷 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1) by Probability Integral Transform.
▶ ℙ(Uniform(0, 1) < 𝑐) = 𝑐.
▶ Result: 𝑈𝐷 is a known distribution, 𝜋(𝑋, 𝑍) is identified.
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Generalized Roy model

Model

𝑌0 = 𝜇0(𝑋) + 𝑈0

𝑌1 = 𝜇1(𝑋) + 𝑈1

𝑌 = (1 − 𝐷)𝑌0 + 𝐷𝑌1

𝜋(𝑋, 𝑍)= 𝑃(𝐷 = 1|𝑋, 𝑍)

Assumptions
1. 𝐷 = 𝟙{𝑈𝐷 ≤ 𝜋(𝑋, 𝑍)}
2. 𝑍 ⟂⟂ (𝑌0, 𝑌1, 𝑈𝐷)|𝑋
3. Distribution of 𝑈𝐷|(𝑋 = 𝑥, 𝑍 =

𝑧)∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(0, 1)

▶ 𝑈𝐷 is interpretable as a quantile of ”resistance to treatment”
conditional on 𝑋

▶ It is only comparable across individuals with same observables (a.k.a
within 𝑋)

▶ Indiv with lower 𝑈𝐷 are more likely to take treatment (regardless of 𝑍).
▶ Result: The models are observationally equivalent!

▶ Do not need to know 𝑉 nor 𝜈(.)
▶ Only need propensity score which is identified!
▶ A propensity score of 0.9 ⇒ Every individual with resistance to

treatment below 90𝑡ℎ percentile is treated.
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Power of this normalization

This transformation is very important for identification:

𝜋(𝑋, 𝑍) = 𝑃(𝐷 = 1|𝑋, 𝑍)
𝐷 = 𝟙{𝑈𝐷 ≤ 𝜋(𝑋, 𝑍)}

▶ It directly links propensity score (𝜋(𝑋, 𝑍)) to quantiles of
resistance to treatment (𝑈𝐷)

▶ When observing 𝜋(𝑋, 𝑍) = .30, it means that the 30% with lowest 𝑈𝐷
took up treatment a.k.a 𝑈𝐷 ≤ .30.

▶ Therefore if the instrument 𝑍 ∈ {0, 1} shifts propensity from:

𝜋(𝑋, 𝑍 = 0) = 0.3 → 𝜋(𝑋, 𝑍 = 1) = 0.6

then you know that the compliers are the ones with

𝑈𝐷 ∈ [𝜋(𝑋, 𝑍 = 0) = 0.3, 𝜋(𝑋, 𝑍 = 1) = 0.6]
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Marginal Treatment Effects (MTEs)

𝑀𝑇 𝐸(𝑢, 𝑥) = 𝔼(𝑌1 − 𝑌0|𝑈𝐷 = 𝑢, 𝑋 = 𝑥) (1)
= 𝜇1(𝑥) − 𝜇0(𝑥)⏟⏟⏟⏟⏟⏟⏟

Observed heterogeneity TE

+ 𝔼[𝑈1 − 𝑈0|𝑋 = 𝑥, 𝑈𝐷 = 𝑢]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Unobserved heterogeneity TE

. (2)

▶ 𝑀𝑇 𝐸(𝑢, 𝑥) is the average causal effect of D on Y for individuals
with selection unobservable 𝑈𝐷 = 𝑢 and observed
characteristics 𝑋 = 𝑥.

▶ MTE declining in 𝑢: indiv most likely to take treatment receive greater
gains from it.

▶ No unobsered heterogeneity: MTE is constant (flat) along 𝑢.

The MTE is a useful definition because it uses the selection model to
partition the population based on all unobservable and observable
determinants of their treatment choice except for the instrument, which
is the source of exogenous variation
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Marginal Treatment Effects and LATE

▶ MTEs are closely related to LATE.
▶ LATE is the average effect of treatment for people who are shifted into

treatment when the instrument is exogenously shifted from 𝑧 to 𝑧′.
▶ In GRM these people (the ”compliers”) have 𝑈𝐷 in the interval

[𝜋(𝑧), 𝜋(𝑧′)].

▶ Note how, when 𝑧 − 𝑧′ is infinitesimally small, so that 𝜋(𝑧′) = 𝜋(𝑧), the
LATE converges to the MTE.

▶ MTE is thus a limit form of LATE.
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From MTE Function to Target Parameters

Target Parameters
▶ ATE, TOT, TUT, LATE,PRTE, etc.

General Approach
▶ Any of the above (and more!) can be computed as a weighted average

of the MTE.

Example: ATE from MTE

𝐴𝑇 𝐸(𝑥) = 𝔼[𝑌1 − 𝑌0|𝑋 = 𝑥] = 𝔼𝑉 |𝑋=𝑥[𝑀𝑇 𝐸(𝑋, 𝑈𝐷)] = ∫
1

0
𝑀𝑇 𝐸(𝑥, 𝑢) × 1𝑑𝑢

▶ Follows because 𝑈𝐷|𝑋 = 𝑥 ∼ Uniform(0, 1).
▶ ATT : higher weights to lower resistance to treatment
▶ ATUT : higher weight to higher resistance to treatment
▶ Other weighting functions.
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Ito, Ida, and Tanaka, 2023 - Electricity dynamic pricing (1/2)

Ito, Ida, and Tanaka, 2023 study dynamic electricity pricing on
consumption.

▶ Dynamic pricing: higher peak-hour, lower off-peak rates.
▶ Treatment (𝐷): household adopts dynamic pricing.
▶ Instrument (𝑍): $60 incentive to adopt (randomly assigned).
▶ Outcome (𝑌): electricity usage.

⇒ Fits LATE setting: 𝐷, 𝑍 ∈ {0, 1}; 𝑍 randomly assigned (full exogeneity);
satisfies relevance and monotonicity.

▶ LATE estimates effect of the $60 incentive.
▶ But what about alternative policies?
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Ito, Ida, and Tanaka, 2023 - Electricity dynamic pricing (2/2)

▶ Unobserved Heterogeneous Treatment Effects (UHTE):
▶ ”Ease of adjustment” is unobserved.
▶ MTE captures UHTE via 𝑢.

▶ Selection on gains: consumers with higher expected savings are more
likely to adopt.
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Policy Implications

▶ Incentive size matters:
▶ Small incentives attract high-impact adopters.
▶ Large incentives attract more adopters with smaller effects.

▶ MTE relies on stronger assumptions ⇒ Alternative policy estimates are
less credible than LATE.

▶ Trade-off: LATE alone is limited, MTE provides deeper insight.
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Cornelissen et al., 2018 - Who Benefits from Universal Child Care?

Background

▶ Major policy question: causal effect of early childhood interventions,
including state-provided day care.

▶ Some studies of highly-targeted programs (e.g. Head Start / Perry
Preschool) find sizable positive effects.

▶ Evidence for universal provision is mixed: some find sizable negative
effects (Quebec study).

▶ How to rationalize these conflicting findings?
▶ Maybe targeted programs enroll children most likely to benefit, i.e.

those with an adverse home environment.
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Cornelissen et al., 2018 - Who Benefits from Universal Child Care?

This Study

▶ Study provision of universal preschool/childcare in Germany using
MTE approach.

▶ Use a staggered roll-out of 1990s policy reform that affected the
number of slots for publicly-provided childcare in different places.

▶ Treatment (𝐷 ∈ {0, 1}) is early attendance, defined as attending for at
least three years.

▶ Also estimate MTE for ordered selection model: {1, 2, 3} years.
▶ Instrument (𝑍) is child care coverage rate in the municipality.
▶ Outcome (𝑌) is a universal school readiness exam administered at age 6.
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Cornelissen et al., 2018 - Who Benefits from Universal Child Care?

▶ Reverse selection on gains: Minorities benefit most but enroll less.
▶ Similar selection on unobservables: ”High resistance” children benefit

most.
▶ Strong effect: TUT > ATE > 0 > TOT.

Ordered MTE
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Identification
Separability (1/3)

▶ In principle, possible to identify MTEs with no further assumptions.
▶ However, would require a 𝑍 allowing 𝜋(𝑋, 𝑍) to vary over the full

range (0, 1) for any value of 𝑋 !

Assumption 4: Separability 𝔼(𝑈𝑗|𝑉 , 𝑋) = 𝔼(𝑈𝑗|𝑉 ) for 𝑗 ∈ {0, 1}

Result:

▶ MTEs are additively separable in 𝑈𝐷 and 𝑋:
▶ 𝑋 only affects intercept of MTE.
▶ The pattern of UHTE does not depend on 𝑋.
▶ e.g MTE has same pattern for Men and Women but different intercept.

▶ MTE is identified over the common support, unconditional on X

0Do not mistake unobserved potential treatment effects (𝑈0, 𝑈1) with quantiles of
resistance to treatment 𝑈𝐷
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Identification
Separability (2/3)
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Figure: Implications of separability for MTE
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Identification
Separability (3/3)

Is separability such a strong assumption?

▶ Not as strong as joint normality of (𝑈0, 𝑈1, 𝑉 ) in Heckman selection
model.

▶ Same pattern along quantiles of resistance to treatment, so might
actually make sense.

▶ This assumption should be carefully evaluated by researcher
▶ This is application dependent.
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MTE is identified over common support of 𝜋(𝑋, 𝑍)

▶ Separability assumption ⇒ do not need 𝜋(𝑋, 𝑍) to have support in
(0, 1) for all 𝑥

▶ a.k.a 𝑠𝑢𝑝𝑝 (𝜋(𝑋 = 𝑥, 𝑍)) = (0, 1)∀𝑥
▶ Instead, only need 𝑠𝑢𝑝𝑝 (𝜋(𝑋, 𝑍)) = (0, 1) unconditional on 𝑋!

▶ MTE is identified over the common support!
▶ Each 𝑋 = 𝑥 will contribute to identify some part of the support of 𝑈𝐷.

Figure: Andresen, 2018, common support plot, probit
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Identification
Linearity

It is common practice to assume linearity for 𝜇𝑗(𝑋):

▶ Restrict the way co-variates affect MTE’s intercept.
▶ 𝐸[𝑌0|𝑋 = 𝑥] = 𝑥′𝛽0 and 𝐸[𝑌1|𝑋 = 𝑥] = 𝑥′𝛽1

Together, Separability + Linearity yield:

MTE(𝑢, 𝑥) = 𝜇1(𝑥) − 𝜇0(𝑥) + 𝐸 (𝑈1 − 𝑈0 ∣ 𝑋 = 𝑥, 𝑈𝐷 = 𝑢)
= 𝜇1(𝑥) − 𝜇0(𝑥) + 𝐸 (𝑈1 − 𝑈0 ∣ 𝑈𝐷 = 𝑢) (Separability)
= 𝑥′ (𝛽1 − 𝛽0)⏟⏟⏟⏟⏟

heterogeneity in observables

+ 𝐸 (𝑈1 − 𝑈0 ∣ 𝑈𝐷 = 𝑢)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘(𝑢): heterogeneity in unobservables

(Linearity)

= 𝑥′ (𝛽1 − 𝛽0) + 𝑘(𝑢)

Note that because of Separability 𝑘(𝑢) is only a function of 𝑢, not 𝑥!
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Estimation approaches

Two approaches exist to estimate MTES:

1. Local IV
▶ Heckman and Vytlacil, 1999; Heckman and Vytlacil, 2001; Heckman and

Vytlacil, 2005
2. Separate Approach

▶ Heckman and Vytlacil, 2007; Brinch, Mogstad, and Wiswall, 2017
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Local IV - Intuition
▶ For fixed 𝑋, without UHTE 𝔼(𝑌 |𝜋) = 𝔼(𝐷𝑌1 + (1 − 𝐷)𝑌0|𝜋) is linear in 𝜋.

▶ Without UHTE, only the proportion of treated changes, while TE is
constant.

▶ On the other hand: with UHTE, 𝔼(𝑌 |𝜋) displays non-linearities
▶ LIV identifies MTE from those non-linearities!
▶ Hence from the derivative of 𝔼(𝑌 |𝜋) w.r.t 𝜋:

▶ Constant derivative ⇒ constant MTE ⇒ no UHTE
▶ ↑ / ↓ derivative ⇒ ↑ / ↓ MTE ⇒ UHTE.
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Local IV - Separability assumption
▶ LIV requires ≥ 3 distinct values of 𝜋(𝑍) to identify linear MTE.
▶ Thus binary 𝑍 would not work?
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Local IV - Separability assumption
▶ LIV requires ≥ 3 distinct values of 𝜋(𝑍) to identify linear MTE.
▶ Thus binary 𝑍 would not work?
▶ Would still work thanks to separability assumption!

▶ Even with 𝑍 ∈ {0, 1}
▶ Will result in different {𝜋(𝑧), 𝜋(𝑧′)} across observables 𝑋!
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Local IV - Separability assumption
▶ LIV requires ≥ 3 distinct values of 𝜋(𝑍) to identify linear MTE.
▶ Thus binary 𝑍 would not work?
▶ Would still work thanks to separability assumption!

▶ Even with 𝑍 ∈ {0, 1}
▶ Will result in different {𝜋(𝑧), 𝜋(𝑧′)} across observables 𝑋!

▶ Homogeneizing intercepts
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Local IV - Formally

▶ From GRM with listed assumptions, can show that:

𝔼{𝑌 |𝑋 = 𝑥, 𝜋(𝑋, 𝑍) = 𝑝} = 𝔼{𝑌0 + 𝐷(𝑌1 − 𝑌0)|𝑋 = 𝑥, 𝜋(𝑋, 𝑍) = 𝑝}
= 𝑥𝛽0 + 𝑥(𝛽0 − 𝛽1)𝑝 + 𝑝𝔼(𝑈1 − 𝑈0|𝑈𝐷 ≤ 𝑝)⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝐾(𝑝)

▶ Taking the derivative of this expression with respect to 𝑝 and
evaluating it at 𝑢, we get the MTE:

𝜕𝔼{𝑌 |𝑋 = 𝑥, 𝜋(𝑋, 𝑍) = 𝑝}
𝜕𝑝

∣
𝑝=𝑢

= 𝑥(𝛽1 − 𝛽0) + 𝜕{𝑝𝔼(𝑈1 − 𝑈0|𝑈𝐷 ≤ 𝑝)}
𝜕𝑝

∣
𝑝=𝑢

𝑀𝑇 𝐸(𝑥, 𝑢) = (𝛽1 − 𝛽0)𝑥 + 𝔼(𝑈1 − 𝑈0|𝑈𝐷 = 𝑢)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑘(𝑢)
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Local IV - Estimation procedure

1. Identify selection into treatment 𝜋(𝑋, 𝑍) using a probability model
▶ e.g., probit, logit, linear probability, or semiparametric binary choice.

2. Assume a functional form for 𝐾(𝑝) = 𝑝𝐸(𝑈1 − 𝑈0|𝑈𝐷 ≤ 𝑝).
▶ Parametric MTE (Joint normality, polynomial, polynomial w/ splines)
▶ Semi-parametric (local polynomial regressions)

3. Estimate the conditional expectation of 𝑌 from eq.4

𝔼{𝑌 |𝑋 = 𝑥, 𝜋(𝑋, 𝑍) = 𝑝} = 𝑥𝛽0 + 𝑥(𝛽0 − 𝛽1)𝑝 + 𝑝𝔼(𝑈1 − 𝑈0|𝑈𝐷 ≤ 𝑝)⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐾(𝑝)

4. Form its derivative to obtain the MTE.
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Local IV - Cornelissen et al., 2018

▶ Cornelissen et al., 2018 estimate parametric MTE.
▶ Model 𝐾(𝑝) as a polynomial in 𝑝

𝔼[𝑌 ∣ 𝜋(𝑋, 𝑍) = 𝑝, 𝑋 = 𝑥] = 𝑥′𝛽0 + 𝑥′ (𝛽1 − 𝛽0) 𝑝 +

𝐾(𝑝)

⏞𝐽
∑
𝑗=2

𝛼𝑗𝑝𝑗

1. Run probit/logit of 𝐷𝑖 on (𝑋𝑖, 𝑍𝑖) to estimate the propensity scores ̂𝑝𝑖 .
2. Estimate 𝛽0, 𝛽1, 𝛼 from the following regression:

𝑌𝑖 = 𝑋𝑖𝛽0 + 𝑋′
𝑖 (𝛽1 − 𝛽0) ̂𝑝𝑖 +

𝐽
∑
𝑗=2

𝛼𝑗 ̂𝑝𝑗
𝑖 + 𝜖𝑖

3. Construct the estimated MTE function as follows:

M̂TE(𝑝, 𝑥) = 𝜕
𝜕𝑝

[𝑥′ ̂𝛽0 + 𝑥′ ( ̂𝛽1 − ̂𝛽0) 𝑝 +
𝐽

∑
𝑗=2

̂𝛼𝑗𝑝𝑗]

4. Take weighted average of 𝑀𝑇 𝐸(𝑝, 𝑥) to construct desired target
parameter.
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Separate approach - Intuition
▶ Specify and estimate conditional expectations of 𝑌1 and 𝑌0 in

treated/untreated sample separately

𝔼(𝑌1|𝑋 = 𝑥, 𝐷 = 1) = 𝑥𝛽1 + 𝔼(𝑈1|𝑈𝐷≤𝑝) = 𝑥𝛽1 + 𝐾1(𝑝) (3)
𝔼(𝑌0|𝑋 = 𝑥, 𝐷 = 0) = 𝑥𝛽0 + 𝔼(𝑈0|𝑈𝐷>𝑝) = 𝑥𝛽0 + 𝐾0(𝑝) (4)
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Separate approach - Intuition

E(Y1|z)
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▶ Average outcome for treated under 𝑧
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Separate approach - Intuition

E(Y1|z)

E(Y1|z′)
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▶ Average outcome for treated under 𝑧′

▶ Observe decreasing outcome for treated
▶ If this trend is not parallel for the 𝑌0|𝑢), will entail UHTE.
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Separate approach - Intuition

E(Y1|z)

E(Y1|z′)
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▶ Average outcome for un-treated under 𝑧
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Separate approach - Intuition

E(Y1|z)

E(Y1|z′)

E(Y0|z)
E(Y0|z′)
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▶ Average outcome for un-treated is increasing in 𝑢
▶ Decreasing 𝐸(𝑌1|𝑢) & increasing 𝐸(𝑌1|𝑢) ⇒ ↓ MTE ⇒ UHTE.
▶ Binary 𝑍 identifies a linear MTE model within 𝑋!
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Separate approach - In practice

1. Identify selection into treatment 𝜋(𝑋, 𝑍) using a probability model
▶ e.g., probit, logit, linear probability, or semiparametric binary choice.

2. Assume a functional form for 𝐾𝑗(𝑝) = 𝑝𝐸(𝑈𝑗|𝑈𝐷 ≤ 𝑝) for 𝑗 ∈ 0, 1.
▶ Parametric MTE (Joint normality, polynomial, polynomial w/ splines)
▶ Semi-parametric (local polynomial regressions)

3. Estimate the conditional expectation of Y in the sample of treated and
untreated separately using the regression:

𝑌𝑗 = 𝑋𝛽𝑗 + 𝐾𝑗(𝑝) + 𝜖

4. Form the derivatives to obtain the MTE from:

𝑀𝑇 𝐸(𝑥, 𝑢) = 𝔼(𝑌1|𝑋 = 𝑥, 𝑈𝐷 = 𝑢) − 𝔼(𝑌0|𝑋 = 𝑥, 𝑈𝐷 = 𝑢)
= 𝑥(𝛽1 − 𝛽0) + 𝑘1(𝑢) − 𝑘0(𝑢)

Where 𝑘𝑗(𝑢) = 𝔼(𝑈𝑗|𝑈𝐷 = 𝑢)
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MTE in alternative Setups

▶ Binary 𝐷𝑖 with violation of monotonicity
▶ e.g judge FE.
▶ Solution: Binarize instrument, ”most” vs ”least” strict. Makes less likely

to violate monotonicity.
▶ Binary multiple instruments

▶ e.g distance (close vs far) + scholarship (yes vs no).
▶ Remove (𝑍𝑖1, 𝑍𝑖2) = (0, 1) and (𝑍𝑖1, 𝑍𝑖2) = (1, 0)
▶ Keep only (𝑍𝑖1, 𝑍𝑖2) = (0, 0) and (𝑍𝑖1, 𝑍𝑖2) = (1, 1)

▶ Ordered treatments
▶ MTE does extend to ordered treatment (e.g Bachelor vs Master)
▶ But, threshold crossing not equiavelent to monotonicity anymore
▶ Example : Cornelissen et al., 2018

▶ Continuous treatment
▶ Requires extreme variations1 in 𝑍𝑖 or additional assumptions.

▶ Unordered treatments
▶ Requires extreme variations in 𝑍𝑖 or additional assumptions.

1Does not exist in practice
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Recommendations for Practitioners (1/3)

Step 1: Assess the likely role of UHTE

▶ Why could treatment effects vary? Is there any reason to think that
treatment effects would not vary?

▶ Problem occurs if UHTE is correlated with treatment choice. How
plausible is it to assume that the UHTE is uncorelated with treatment
choice?

▶ To defend non-existence of UHTE: show that there is no OHTE
(precisely estimated 0s).

▶ If stick to constant-TE assumption: state clearly in paper.
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Recommendations for Practitioners (2/3)

Step 2: Reverse engineer with caution. The JOSH method:

1. Judge the setting. Which setting is applicable? (Treatment,
Instrument, Covariates)

2. Obtain a weakly causal interpretation. Is estimand weakly causal
under full exogeneity and an appropriate monotonicity condition?

▶ Primary concern = Satisfy rich covariates condition?
▶ If 𝑍𝑖 ⟂⟂ 𝑋𝑖, automatically satisfied.
▶ Otherwise: perform RESET test.

3. Scrutinize the interpretation. How can be the estimand
interpreted? (Weights, counterfactual)

4. Honestly communicate to the audience. Clearly and
transparently communicate the interpretation of the estimand and
the assumptions on which the interpretation rests.
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Recommendations for Practitioners (3/3)
Step 3: Forward engineer estimates of interpretable target
parameters

▶ Choose target parameters relevant to your research question.
▶ What can be said about target parameters depend on assumptions

made.
▶ Explore the frontier (trade-off)
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Recommended packages

For MTE:

▶ STATA: mtefe (Andresen, 2018), ivmte (Shea and Torgovitsky, 2023)
▶ R: ivmte (Shea and Torgovitsky, 2023)

See Torgovitsky’s github for more detailed list of packages.

https://github.com/martin-andresen/mtefe
https://tinyurl.com/3sutzdmt
https://tinyurl.com/3sutzdmt
https://a-torgovitsky.github.io/ivhandbook
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The Generalized Roy Model (GRM) - Full exogeneity

Model

𝑌0 = 𝜇0(𝑋) + 𝑈0

𝑌1 = 𝜇1(𝑋) + 𝑈1

𝑌 = (1 − 𝐷)𝑌0 + 𝐷𝑌1

Assumptions
1. 𝐷 = 𝟙{𝑉 ≤ 𝜈(𝑋, 𝑍)}
2. 𝑍 ⟂⟂ (𝑌0, 𝑌1, 𝑉 )|𝑋
3. Distribution of 𝑉 |𝑋 = 𝑥 is

continuous.

▶ Assumption 2 implies (conditional) full exogeneity
▶ It is equivalent to 𝑍 ⟂⟂ (𝑌0, 𝑌1, 𝐷0, 𝐷1)|𝑋
▶ 𝑍 conditionally independent of Potential outcomes and is independent

of unobservables (𝑉) which determine potential treatment.
Back
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The Generalized Roy Model (GRM) - Monotonicity

Model

𝑌0 = 𝜇0(𝑋) + 𝑈0

𝑌1 = 𝜇1(𝑋) + 𝑈1

𝑌 = (1 − 𝐷)𝑌0 + 𝐷𝑌1

Assumptions
1. 𝐷 = 𝟙{𝑉 ≤ 𝜈(𝑋, 𝑍)}
2. 𝑍 ⟂⟂ (𝑌0, 𝑌1, 𝑉 )|𝑋
3. Distribution of 𝑉 |𝑋 = 𝑥 is

continuous.

▶ Assumption 1 + 2 imply monotonicity
▶ Holding 𝑋 fixed, we can shift 𝜈(𝑋, 𝑍) by changing 𝑍 without affecting

𝑉.
▶ Why? Conditional on 𝑋 , 𝑍 and 𝑉 are independent and 𝑉 doesn’t enter

𝜈(·).
▶ For a given shift in 𝑍, two people with the same observed

characteristics 𝑋 experience the same shift in 𝜈(·) regardless of whether
they have different resistance to treatment 𝑉

Back
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Policy Relevant Treatment Effects (PRTEs)

PRTE(𝑥) ≡ 𝔼 [𝑌 ∣ 𝑋 = 𝑥, New Policy ] − 𝔼 [𝑌 ∣ 𝑋 = 𝑥, Old Policy ]
𝔼 [𝐷 ∣ 𝑋 = 𝑥, New Policy ] − 𝔼 [𝐷 ∣ 𝑋 = 𝑥, Old Policy ]

▶ Compare a new policy to old one; average over 𝑋 to obtain
unconditional version.

▶ Policy ≡ change in the propensity score 𝜋(𝑍, 𝑋) that changes who is
treated without affecting ( 𝑌1, 𝑌0, 𝑉 ).

▶ PRTE is the average change in 𝑌 per person shifted into treatment.
▶ At some values of 𝑥, people may be shifted out of treatment
▶ A LATE is a PRTE, but a given LATE may not answer your policy

question!
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Parametric MTE

Back
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Semi-parametric MTE

Back
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Target parameters: MTR weights

Back

▶ When weights are symetric (a.k.a 𝜔(1|𝑢, 𝑍𝑖, 𝑋𝑖) = −𝜔(0|𝑢, 𝑍𝑖, 𝑋𝑖):

target parameter = 𝔼 [(MTR(1|𝑢, 𝑋𝑖) − MTR(0|𝑢, 𝑋𝑖)) 𝜔(1|𝑢, 𝑍𝑖, 𝑋𝑖)]
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Target parameters: MTE weights
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Cornelissen et al., 2018 - Ordered MTE

Back Back - alternative setups
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Cornelissen et al., 2018 et al MTE - robustness polynomials
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Reverse Engineering, context



12/14

MLE process
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MTE and Marginal Treatment Responses (MTR)

▶ MTE can be decomposed into 2 conditional expectations called MTR.

MTR(𝑑|𝑢, 𝑥) ≡ 𝔼[𝑌 (𝑑)|𝑈 = 𝑢, 𝑋 = 𝑥] (5)

▶ Any target parameter that reflects a mean or a mean contrast of
potential outcomes can be written as a weighted average of the MTR
function.

▶ For isntance, the ATE

𝔼[𝑌1 − 𝑌0] = 𝔼𝑋 [∫
1

0
(MTR(1|𝑢, 𝑋) − MTR(0|𝑢, 𝑋))𝑑𝑢] (6)

Key to these weighting expressions is that the weights themselves are
identified.
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Separate approach - estimation

1. Construct 𝐾1(𝑝) and 𝐾0(𝑝), depending on your specification; see tables
1 and 2.

2. Estimate the conditional mean of 𝑌 from the stacked regression:

𝑌 = 𝑋𝛽0 + 𝐾𝐷(𝑝) + 𝐷{𝑋(𝛽1 − 𝛽0) + 𝐾𝐷(𝑝)} + 𝜖

where

𝐾𝐷(𝑝) = {
𝐾1(𝑝) if 𝐷 = 1
𝐾0(𝑝) if 𝐷 = 0

3. From these estimates, recover the 𝑘𝑗(𝑢) functions.
4. Construct the estimates of the potential outcomes and the MTE as

̂𝑌𝑗(𝑥, 𝑢) = 𝑥 ̂𝛽𝑗 + 𝑘𝑗(𝑢)

̂𝑀𝑇 𝐸(𝑥, 𝑢) = ̂𝑌1(𝑥, 𝑢) − ̂𝑌0(𝑥, 𝑢)
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